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Outline 
•  Comparison of flux uncertainty from two 

similar GOSAT flux inversions (2010-2011) 
•  Comparison of flux estimates from same 

two inversions 
•  Impact of other assumptions (2009-2014) 
– Subset of GOSAT data used 

•  High- and medium-gain nadir data over land 
•  Glint data over ocean 

–  Prior fluxes used 



Uncertainty in estimates of C storage 
The challenge:  many approaches to characterizing 
uncertainty – details are important when comparing 
 
Example -- compare two closely-related quantities from CMS 
flux and biomass projects: 

•  Biomass projects: carbon stored in trees  
–  only above-ground biomass 
–  only in sampled “forested” areas 

•  Flux projects: carbon cycling through continents, as 
inferred from top-down atmospheric inversions.  Includes: 
–  C that runs off into ocean via rivers 
–  C stored in grasslands, scrublands, wetlands, etc. 
–  C stored below ground in roots/soils 
–  C stored in sediments behind dams 



Uncertainty estimates from OSSEs 
•  In past, flux uncertainties taken from a posteriori covariance matrix 

given by flux inversion 
•  For large problems, matrices get too large to use traditional batch 

inversion 
•  More efficient methods, like variational data assimilation (“4Dvar”), 

required -- they obtain their efficiency by jettisoning the full covariance 
calculation 

•  Uncertainties calculated instead with observing system simulation studies 
(OSSEs): 
–  A set of “true” fluxes is chosen, run through transport model to get “true” 

concentrations 
–  Random measurement errors added on to get “true” measurements 
–  These measurements are assimilated into a global CO2 flux inversion system, starting 

from a (different) initial guess of fluxes, to get a final flux estimate 
–  The final flux estimate is compared to the know “true” fluxes to calculate the flux errors 

from the inversion 
–  This may be done multiple times with different draws of noise for the measurement 

errors and the prior-truth flux errors 
–  Uncertainty statistics calculated from the  posterior – truth flux differences 



Comparison of flux uncertainties from two similar 
OSSEs using GOSAT atmospheric CO2 data 

  David Baker,  CIRA/CSU 
 
•  4DVar data assimilation 
•  PCTM transport model 
•  MERRA met drivers 
•  Surface CO2 fluxes estimated: 

•  weekly 
•  on 4.5°x6° (lat/lon) grid 
•  both land and ocean areas 

•  GOSAT XCO2 retrievals used: 
•  both H- & M-gain over land 
•  glint over ocean 

•  Uncertainty calculation: 
•  monte carlo, N = 1 
•  prior, true fluxes from two 

different carbon models 

     Junjie Liu,  NASA/JPL 
 
•  4DVar data assimilation 
•  GEOS-Chem transport model 
•  MERRA met drivers 
•  Surface CO2 fluxes estimated: 

•  monthly 
•  on 4°x5° (lat/lon) grid 
•  land areas only 

•  GOSAT XCO2 retrievals used: 
•  H-gain over land	
  

•  Uncertainty calculation: 
•  monte carlo,  N = 60 
•  random prior-truth flux 

differences consistent with Po 
assumed in inversion 

	
  



GOSAT soundings used 

H-gain data over land Both H- & M-gain data over land 
Glint data over oceans 

Baker Liu 

Measurement uncertainties assumed: 
•  1.7 ppm (1σ)  --  H-gain land 
•  1.5 ppm (1σ)  --  M-gain land 
•  1.0 ppm (1σ)  --  ocean glint 

Measurement uncertainties assumed: 
•  1.0 – 2.5 ppm (1σ)  --  H-gain land 

(using the actual uncertainties 
calculated for each ACOS retrieval)  

M-­‐gain	
  over	
  deserts	
  

ocean	
  glint	
   H-­‐gain	
  over	
  non-­‐desert	
  land	
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Uncertainty reduction statistic 

R = (σprior– σpost) / σprior	
  	
  

Baker Liu 

.25 .25 .05 .05 

•  Uncertainty reductions largest where initial errors largest 
•  Patterns of a priori uncertainty assumed are quite different 
•  Overall uncertainty reduction differs by factor of 3 
•  Final uncertainties for Liu lower, due to tighter prior 



Conclusions – flux uncertainty 

•  Even when two groups are trying to solve 
for the same thing, large differences may 
occur due to assumptions 

•  Here, largest differences due to: 
– Assumed prior-truth flux differences 
– Volume/type of GOSAT data used 
– Measurement uncertainties assumed 
– Monte carlo approach used 

•  Prior-truth flux differences 
•  Number of draws of random errors 



Outline 
•  Comparison of flux uncertainty from two 

similar GOSAT flux inversions (2010-2011) 
•  Comparison of flux estimates from same 

two inversions 
•  Impact of other assumptions (2009-2014) 
– Subset of GOSAT data used 

•  High- and medium-gain nadir data over land 
•  Glint data over ocean 

–  Prior fluxes used 



Liu CMS net biospheric flux (including fire) 
estimated for 2010 and 2011 

2010	
  (unit:	
  GtC/year)	
   2011	
  (unit:	
  GtC/year)	
  
	
  

•  Mid	
  to	
  high	
  la9tudes	
  absorb	
  CO2	
  from	
  the	
  atmosphere	
  
•  Tropics	
  release	
  CO2	
  in	
  both	
  years	
  

•  Source	
  strength	
  is	
  reduced	
  in	
  2011	
  in	
  tropics	
  
•  Sink	
  becomes	
  weaker	
  in	
  NA	
  	
  

2011-­‐2010	
  (unit:	
  GtC/year)	
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Flux changes (2011-2010): Liu & Baker GOSAT 
inversions, MACCIII, and CarbonTracker 

•  MACCIII	
  (ECMWF)	
  and	
  CarbonTracker	
  (NOAA)	
  both	
  constrained	
  by	
  surface	
  CO2	
  obs,	
  only	
  
•  RMS(CT-­‐MACC)=0.25	
  GtC;	
  	
  
•  RMS(CMS-­‐MACC)=0.27	
  GtC;	
  RMS(CMS-­‐CT)=0.41	
  GtC	
  

Flux	
  changes	
  from	
  CT	
  and	
  
MACC	
  with	
  the	
  same	
  sign	
  

2011-­‐2010	
  

Flux	
  changes	
  from	
  CT,	
  MACC,	
  	
  
CMS-­‐Flux,	
  and	
  Baker	
  	
  
with	
  the	
  same	
  sign	
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Possibly correct flux change signals 
from CMS-Flux 

•  Flux	
  changes	
  from	
  CMS-­‐Flux	
  detect	
  the	
  impact	
  of	
  2011	
  southern	
  drought	
  on	
  CO2	
  
fluxes	
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Possibly correct flux change signals 
from CMS-Flux 

•  Flux	
  changes	
  from	
  CMS-­‐Flux	
  detect	
  the	
  rela9ve	
  impact	
  of	
  2010	
  Amazonia	
  drought	
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Possibly correct flux change signals 
from CMS-Flux 

•  Anomaly	
  high	
  temperature	
  in	
  2010	
  produces	
  large	
  source	
  in	
  Tropical	
  Asia	
  (Basu	
  et	
  al.,	
  
2014)	
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Geophysical Research Letters 10.1002/2013GL059105

Figure 5. (top) Monthly mean surface air temperature anomaly from
the NOAA NCEP CPC GHCN + CAMS data set and (bottom) precipitation
anomaly from GPCP over Tropical Asia, relative to the 30 year mean
from 1981 to 2010.

5. Revised CO2 Biomass
Burning Estimates

Christian et al. [2003] performed mea-
surements to determine the CO:CO2

emission ratios for different fuel types
responsible for Indonesian biomass
burning emissions. We break down our
CO emission estimates within the 1◦ × 1◦

and 3◦ × 2◦ regions according to vege-
tation type using the GFED3 partitioning
(available at http://www.falw.vu/~gwerf/
GFED/GFED3/partitioning/GFED3.1_CO_
partitioning.zip) to get CO emission from
each vegetation type for each grid box.
We then use the emission ratios mea-
sured by Christian et al. [2003] to convert
those into CO2 emission per category
per grid box. Finally, we sum up the CO2

emission estimates over large regions
(such as Tropical Asia) and 3-monthly
time periods. In our prior emission esti-
mates of Figure 2, we substitute the
biomass burning component—which
was not optimized—with this new

biomass burning estimate and plot the resultant flux time series as Prior (BB adj) in Figure 2.

We see from Figure 2 that Prior (BB adj) is very close to Prior, meaning that our biomass burning CO2 esti-
mate (based on IASI XCO inversions) is consistent with the GFED3 biomass burning CO2 emissions used in
our CO2 inversions, and neither our estimate nor GFED3 CO2 explains the anomalous 2010 spring source of
Figure 2. Therefore, we are left with the only alternative explanation that the 2010 source must have been a
land biosphere response to a climate anomaly in the summer of 2010.

6. The Land Biosphere Response

Figure 5 (top) shows the monthly mean surface air temperature over Tropical Asia from the NOAA National

Figure 6. Monthly median chlorophyll fluorescence over Tropical
Asia from GOSAT using the method of Frankenberg et al. [2011].
The red-shaded areas span the months of March, April, and May for
each year.

Centers for Environmental Prediction
(NCEP) Climate Prediction Center (CPC)
Global Historical Climatology Network
(GHCN) + Climate Anomaly Monitoring
System (CAMS) data set [Fan and van
den Dool, 2008], relative to the 30 year
mean from 1981 to 2010 (seasonally
averaged spatial patterns are shown in
the supporting information). The tem-
perature from March to May in 2010 was
consistently higher by 0.5–1 ◦C com-
pared to the long-term mean, and the
corresponding temperatures of 2009
and 2011 were lower. This is significant
in an area where the monthly mean
surface air temperature has a seasonal
cycle of ∼ 5 ◦C. It is entirely plausible
that the higher temperature in 2010
spring/summer, compared to 2011,
resulted in higher respiration in 2010
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Possibly correct flux change signals 
from CMS-Flux 

•  Flux	
  changes	
  from	
  CMS-­‐Flux	
  detect	
  the	
  flux	
  changes	
  due	
  to	
  precipita9on	
  anomaly	
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Figure 5. (top) Monthly mean surface air temperature anomaly from
the NOAA NCEP CPC GHCN + CAMS data set and (bottom) precipitation
anomaly from GPCP over Tropical Asia, relative to the 30 year mean
from 1981 to 2010.

5. Revised CO2 Biomass
Burning Estimates

Christian et al. [2003] performed mea-
surements to determine the CO:CO2

emission ratios for different fuel types
responsible for Indonesian biomass
burning emissions. We break down our
CO emission estimates within the 1◦ × 1◦

and 3◦ × 2◦ regions according to vege-
tation type using the GFED3 partitioning
(available at http://www.falw.vu/~gwerf/
GFED/GFED3/partitioning/GFED3.1_CO_
partitioning.zip) to get CO emission from
each vegetation type for each grid box.
We then use the emission ratios mea-
sured by Christian et al. [2003] to convert
those into CO2 emission per category
per grid box. Finally, we sum up the CO2

emission estimates over large regions
(such as Tropical Asia) and 3-monthly
time periods. In our prior emission esti-
mates of Figure 2, we substitute the
biomass burning component—which
was not optimized—with this new

biomass burning estimate and plot the resultant flux time series as Prior (BB adj) in Figure 2.

We see from Figure 2 that Prior (BB adj) is very close to Prior, meaning that our biomass burning CO2 esti-
mate (based on IASI XCO inversions) is consistent with the GFED3 biomass burning CO2 emissions used in
our CO2 inversions, and neither our estimate nor GFED3 CO2 explains the anomalous 2010 spring source of
Figure 2. Therefore, we are left with the only alternative explanation that the 2010 source must have been a
land biosphere response to a climate anomaly in the summer of 2010.

6. The Land Biosphere Response

Figure 5 (top) shows the monthly mean surface air temperature over Tropical Asia from the NOAA National

Figure 6. Monthly median chlorophyll fluorescence over Tropical
Asia from GOSAT using the method of Frankenberg et al. [2011].
The red-shaded areas span the months of March, April, and May for
each year.

Centers for Environmental Prediction
(NCEP) Climate Prediction Center (CPC)
Global Historical Climatology Network
(GHCN) + Climate Anomaly Monitoring
System (CAMS) data set [Fan and van
den Dool, 2008], relative to the 30 year
mean from 1981 to 2010 (seasonally
averaged spatial patterns are shown in
the supporting information). The tem-
perature from March to May in 2010 was
consistently higher by 0.5–1 ◦C com-
pared to the long-term mean, and the
corresponding temperatures of 2009
and 2011 were lower. This is significant
in an area where the monthly mean
surface air temperature has a seasonal
cycle of ∼ 5 ◦C. It is entirely plausible
that the higher temperature in 2010
spring/summer, compared to 2011,
resulted in higher respiration in 2010
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Monthly flux 
estimates 
2010-2011 

Liu	
  -­‐	
  GOSAT	
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Conclusions – flux estimates 

•  Liu and Baker GOSAT inversions give similar 
results, for shift in flux from 2010 to 2011 

•  Less agreement at monthly time scale 

•  GOSAT data drive fluxes towards different 
values than in situ data do – filling in gaps, or 
adding biases? 



Outline 
•  Comparison of flux uncertainty from two 

similar GOSAT flux inversions (2010-2011) 
•  Comparison of flux estimates from same 

two inversions 
•  Impact of other assumptions (2009-2014) 
– Subset of GOSAT data used 

•  High- and medium-gain nadir data over land 
•  Glint data over ocean 

–  Prior fluxes used 



ACOS b3.5 GOSAT XCO2, 2009-2014 

•  Chris O’Dell’s “lite” Level 2 product, with these 
additional data screened out: 
–  south of 60° S and north of 75°N 
–  retrieved XCO2 uncertainty of ≥ 1.5 ppm 
–  “warn levels” of 17-19 

•  Number of scenes passing these screening criteria: 
–       ~444,000   land, high-gain  (non-desert areas) 
–         ~87,000   land, medium-gain  (desert areas) 
–       ~420,000   ocean glint 

•  Chris O’Dell’s standard bias corrections applied 
•  Measurement uncertainty in inversion taken to be 

60% higher than uncertainty given by retrieval 
•  Outliers greater than 3σ from prior are deweighted 



CarbonTracker,	
  which	
  incorporates	
  informaGon	
  
from	
  in	
  situ	
  CO2	
  measure-­‐	
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data	
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CarbonTracker, which incorporates 
information from in situ CO2 measure- 
ments, fits the GOSAT data better 
overall than the free-running flux models, 
but not for all GOSAT data types  
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RMS mismatch to the GOSAT data [ppm], pre-inversion 

No one land biosphere model or 
combination of prior fluxes is obviously 
better than another at fitting the 
GOSAT data: which model is best 
depends on the type of GOSAT data. 



(fossil fuel removed) 

• 
In sit

u inversio
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• 
GOSAT,  C

arbonTracker 2013 

• 
GOSAT,  S

iB4 Doney FFDAS 

• 
GOSAT,  C

ASA Takahashi FFDAS 

Transcom LAND regions 

Transcom 
OCEAN 
regions 

GOSAT data used: all ocean glint and M- & H-gain  
land data with warning level ≤ 16 

Net annual flux, 2009-2014:  starting from different priors 



(fossil fuel removed) Transcom LAND regions 

Net annual flux, 2009-2014:  using different GOSAT data subsets 

Transcom OCEAN regions 

•  Prior: CASA Takahashi FFDAS 

•  In situ inversion 

•  Ocean (WL ≤ 16) + M & H land (WL≤ 6) 

•  Ocean only 

•  Ocean + M & H land (WL ≤ 16) 

•  M & H land (WL ≤ 16) 

•  H land (WL ≤ 16) 

•  M & H land (WL ≤  6) 



Jan-Mar 

The GOSAT data want to drive Europe towards a large 
uptake of CO2 in the NH winter – unphysical !! 

The GOSAT-driven outgassing in North Africa and 
Temp. Asia, is centered during the NH winter. 



Thoughts on ACOS b3.5 GOSAT data, inversions 

•  Results depend less on the prior, more on the subset of 
GOSAT data used  

•  GOSAT M- and H-gain land data have biases that drive 
winter CO2 outgassing in North Africa & Temp. Asia, 
with balancing uptake in Europe and elsewhere 

•  Using ocean glint data, and a reasonably-tight flux prior, 
mitigate the worst of this 

•  Warn-level filtering of M- and H-land data only partly 
successful: an improved bias correction needed for 
GOSAT land data 

•  GOSAT land data provide information not contained in 
ocean data – should be used, but bias-corrected first 

•  Comparison to independent data can guide the bias-
correction 



Verification against 
aircraft observations over 

Amazonia 

•  The	
  mean	
  posterior	
  CO2	
  bias	
  is	
  
less	
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  1	
  ppm	
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  1	
  km.	
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Verification against TCCON XCO2 
observations 

Black: TCCON 
Green: ACOS 
Blue: prior 
Red: posterior 

•   The overall bias between 
posterior modeled XCO2 and 
TCCON XCO2 is less than 1 
ppm. 
•   A s s i m i l a t i n g A C O S 
observations has improved 
the fitting to TCCON XCO2 
observations.  
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Verification against 
aircraft observations 

over NA 

1
2
3

• 	
   The	
   posterior	
   CO2	
   seasonal	
   cycle	
   has	
   been	
  
improved	
  and	
  the	
  bias	
  becomes	
  smaller.	
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